Robotic-assisted devices in the upper limb
Neurorehabilitation

Stefan Ortmann, MSc, OT

Basel 06.09.2018
Agenda

- Robotic
 - Historical background
 - History and overview of robotics in neurorehabilitation

- Evidence of Robotic-assisted training of the upper extremity
 - Advantage therapy robot & critical review
 - What do Guidelines say

- What to expect in the future
Robotics – History

Leonardo’s robot, da Vinci, 1495

Writing machine, Jaquet-Droz, 1770
History of robotic rehab of the upper extremity

1920 «Helparm» Movement therapie

1961 «Unimate» first robotic Arm

1991 «MIT Manus» first therapeutic robotic arm

06.09.2018
Robotics in the Neurorehabilitation

- Efficiency
- More intensive therapy in severe and very severely affected patients
- Benefit of prestige: For many Patients a Modern and new concept
- Set up time (complex robots)
- costs

06.09.2018
robotic-assisted therapy as group-therapie
Positive cost-benefit-effect \textit{(Hesse et.al.)}
<table>
<thead>
<tr>
<th>Studien ID</th>
<th>Therapiedauer</th>
<th>Häufigkeit und Intensität der Therapie</th>
<th>Gerät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulla et al. 2011 [1]</td>
<td>8–11 Wochen</td>
<td>3-mal pro Woche</td>
<td>adaptierter Industrierobot mit fünf Freiheitsgraden</td>
</tr>
<tr>
<td>Amirabdollahian et al. 2007 [2]</td>
<td>3 Wochen</td>
<td>5-mal pro Woche</td>
<td>GENTLE/s</td>
</tr>
<tr>
<td>Conroy et al. 2011 [15]</td>
<td>6 Wochen</td>
<td>3-mal pro Woche 1 Stunde</td>
<td>InMotion 2.0 Shoulder/Arm Robot</td>
</tr>
<tr>
<td>Daly et al. 2005 [17]</td>
<td>12 Wochen</td>
<td>5-mal pro Woche, 5 Stunden am Tag</td>
<td>InMotion</td>
</tr>
<tr>
<td>Fazekas et al. 2007 [19]</td>
<td>5 Wochen</td>
<td>4–5-mal pro Woche, 30 Minuten</td>
<td>REHAROB</td>
</tr>
<tr>
<td>Hesse et al. 2005 [25]</td>
<td>6 Wochen</td>
<td>5-mal pro Woche, 30 Minuten</td>
<td>Bi-Manu-Track</td>
</tr>
<tr>
<td>Hesse et al. 2014 [26]</td>
<td>4 Wochen</td>
<td>5-mal pro Woche, 30 Minuten</td>
<td>Bi-Manu-Track, Reha-Digit, Reha-Slide, Reha-Slide Duo</td>
</tr>
<tr>
<td>Hollenstein u. Cabri 2011 [28]</td>
<td>2 Wochen</td>
<td>5-mal pro Woche, 30 Minuten</td>
<td>Armeo</td>
</tr>
<tr>
<td>Housman et al. 2009 [29]</td>
<td>8–9 Wochen</td>
<td>3-mal pro Woche, 60 Minuten</td>
<td>T-WREX</td>
</tr>
<tr>
<td>Hsieh et al. 2014 [31]</td>
<td>4 Wochen</td>
<td>5-mal pro Woche, 90–105 Minuten</td>
<td>Bi-Manu-Track</td>
</tr>
<tr>
<td>Kahn et al. 2006 [34]</td>
<td>8 Wochen</td>
<td>3-mal pro Woche für 45 Minuten</td>
<td>ARM Guide</td>
</tr>
<tr>
<td>Klamroth-Marganska et al. 2014 [35]</td>
<td>8 Wochen</td>
<td>3-mal pro Woche für 45 Minuten</td>
<td>ARMin</td>
</tr>
<tr>
<td>Timmermans et al. 2014 [67]</td>
<td>8 Wochen</td>
<td>4-mal pro Woche für 30 Minuten</td>
<td>HapticMaster</td>
</tr>
<tr>
<td>Tomic et al. 2017 [68]</td>
<td>3 Wochen</td>
<td>5-mal pro Woche für 30 Minuten</td>
<td>ArmAssist</td>
</tr>
<tr>
<td>Vanoglio et al. 2017 [69]</td>
<td>6 Wochen</td>
<td>5-mal pro Woche für 40 Minuten</td>
<td>Gloreha Professional</td>
</tr>
<tr>
<td>Villafane et al. 2017 [71]</td>
<td>3 Wochen</td>
<td>3-mal pro Woche für 30 Minuten</td>
<td>Gloreha</td>
</tr>
<tr>
<td>Volpe et al. 2000 [72]</td>
<td>5 Wochen</td>
<td>5-mal pro Woche für 1 Stunde</td>
<td>MIT-Manus</td>
</tr>
<tr>
<td>Volpe et al. 2008 [73]</td>
<td>6 Wochen</td>
<td>3-mal pro Woche für 60 Minuten</td>
<td>InMotion2</td>
</tr>
<tr>
<td>Wu et al. 2012 [74]</td>
<td>4 Wochen</td>
<td>5-mal pro Woche für 90–105 Minuten</td>
<td>Bi-Manu-Track</td>
</tr>
<tr>
<td>Yao et al. 2014 [75]</td>
<td>6 Wochen</td>
<td>3-mal pro Woche für 20 Minuten</td>
<td>ProCo</td>
</tr>
</tbody>
</table>

Mehrholz et. al.
Improvement of everyday functions
Improvement of hand/arm function

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment Mean</th>
<th>Treatment SD</th>
<th>Treatment Total</th>
<th>Control Mean</th>
<th>Control SD</th>
<th>Control Total</th>
<th>Weight IV, Random, 95% CI</th>
<th>Std. Mean Difference IV, Random, 95% CI</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdullah 2011</td>
<td>2.75</td>
<td>1.8</td>
<td>9</td>
<td>1</td>
<td>1.69</td>
<td>11</td>
<td>2.2%</td>
<td>0.96 [0.02, 1.91]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Ang 2014</td>
<td>7.3</td>
<td>3.5</td>
<td>15</td>
<td>4.9</td>
<td>4.1</td>
<td>7</td>
<td>2.2%</td>
<td>0.63 [−0.29, 1.55]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Brokow 2014</td>
<td>1.8</td>
<td>2</td>
<td>7</td>
<td>1.2</td>
<td>2</td>
<td>5</td>
<td>1.6%</td>
<td>0.28 [−0.88, 1.43]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Burgar 2011</td>
<td>10.6</td>
<td>11.56</td>
<td>36</td>
<td>14</td>
<td>15.27</td>
<td>18</td>
<td>4.0%</td>
<td>0.26 [−0.83, 0.31]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Conroy 2011</td>
<td>2.32</td>
<td>3.24</td>
<td>41</td>
<td>1.19</td>
<td>3.4</td>
<td>21</td>
<td>4.3%</td>
<td>0.33 [−0.20, 0.86]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Daly 2005</td>
<td>8.17</td>
<td>7.31</td>
<td>7</td>
<td>9.5</td>
<td>8.02</td>
<td>6</td>
<td>1.7%</td>
<td>−0.16 [−1.25, 0.93]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Fazekas 2007</td>
<td>5.53</td>
<td>1.38</td>
<td>15</td>
<td>2.6</td>
<td>1.77</td>
<td>15</td>
<td>2.4%</td>
<td>1.80 [0.93, 2.66]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hesse 2005</td>
<td>20.5</td>
<td>19.85</td>
<td>22</td>
<td>2.82</td>
<td>4.98</td>
<td>22</td>
<td>3.5%</td>
<td>1.20 [0.55, 1.85]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hesse 2014</td>
<td>11.1</td>
<td>10.69</td>
<td>25</td>
<td>14.6</td>
<td>11.2</td>
<td>25</td>
<td>4.1%</td>
<td>−0.32 [−0.87, 0.24]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hollenstein 2011</td>
<td>3.4</td>
<td>3.9</td>
<td>7</td>
<td>3.7</td>
<td>4.1</td>
<td>6</td>
<td>1.7%</td>
<td>−0.07 [−1.16, 1.02]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Housman 2009</td>
<td>3.3</td>
<td>2.4</td>
<td>17</td>
<td>2.2</td>
<td>2.6</td>
<td>17</td>
<td>3.3%</td>
<td>0.43 [−0.25, 1.11]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hsien 2011</td>
<td>4.17</td>
<td>5.85</td>
<td>12</td>
<td>2.83</td>
<td>7.44</td>
<td>6</td>
<td>2.0%</td>
<td>0.20 [−0.78, 1.18]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hsien 2014</td>
<td>7.31</td>
<td>5.53</td>
<td>32</td>
<td>3.81</td>
<td>5.02</td>
<td>16</td>
<td>3.7%</td>
<td>0.64 [0.03, 1.26]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Hwang 2012</td>
<td>3.5</td>
<td>4.19</td>
<td>9</td>
<td>1.3</td>
<td>4.32</td>
<td>6</td>
<td>1.8%</td>
<td>0.49 [−0.56, 1.54]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Klamroth-Margansk 2014</td>
<td>3.25</td>
<td>1.68</td>
<td>39</td>
<td>2.47</td>
<td>1.67</td>
<td>38</td>
<td>4.9%</td>
<td>0.46 [0.01, 0.91]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Kutner 2010</td>
<td>26.47</td>
<td>17.54</td>
<td>11</td>
<td>14.85</td>
<td>19.86</td>
<td>10</td>
<td>2.4%</td>
<td>0.60 [−0.28, 1.48]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Liao 2011</td>
<td>6.3</td>
<td>5.64</td>
<td>10</td>
<td>1.3</td>
<td>7.92</td>
<td>10</td>
<td>2.3%</td>
<td>0.70 [−0.21, 1.61]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Lo 2010</td>
<td>3.87</td>
<td>7.35</td>
<td>49</td>
<td>−0.03</td>
<td>6.39</td>
<td>78</td>
<td>5.7%</td>
<td>0.57 [0.21, 0.94]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Lum 2006</td>
<td>6.98</td>
<td>1.8</td>
<td>24</td>
<td>5.5</td>
<td>2.5</td>
<td>6</td>
<td>2.3%</td>
<td>0.24 [−0.66, 0.44]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Masiero 2007</td>
<td>15.8</td>
<td>8.1</td>
<td>17</td>
<td>10.3</td>
<td>12.1</td>
<td>18</td>
<td>3.4%</td>
<td>0.52 [−0.16, 1.19]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Masiero 2011</td>
<td>12.16</td>
<td>8.3</td>
<td>11</td>
<td>13.87</td>
<td>10.2</td>
<td>10</td>
<td>2.5%</td>
<td>−0.18 [−1.04, 0.68]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>May 2008</td>
<td>3</td>
<td>2.94</td>
<td>4</td>
<td>1.25</td>
<td>1.26</td>
<td>4</td>
<td>1.1%</td>
<td>0.67 [−0.79, 2.13]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>McCabe 2015</td>
<td>7.7</td>
<td>3.84</td>
<td>12</td>
<td>9.35</td>
<td>4.87</td>
<td>27</td>
<td>3.3%</td>
<td>−0.35 [−1.04, 0.33]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Rabad 2008</td>
<td>3.05</td>
<td>8.12</td>
<td>10</td>
<td>3.88</td>
<td>6.94</td>
<td>20</td>
<td>2.9%</td>
<td>−0.11 [−0.87, 0.65]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Sule 2014</td>
<td>8.69</td>
<td>7.52</td>
<td>26</td>
<td>3.63</td>
<td>10.7</td>
<td>27</td>
<td>4.2%</td>
<td>0.53 [−0.02, 1.08]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Susanto 2015</td>
<td>5.11</td>
<td>6.55</td>
<td>9</td>
<td>5.7</td>
<td>4.35</td>
<td>10</td>
<td>2.3%</td>
<td>−0.10 [−1.00, 0.80]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Timmermans 2014</td>
<td>1.6</td>
<td>10.8</td>
<td>11</td>
<td>3.5</td>
<td>32.7</td>
<td>11</td>
<td>2.6%</td>
<td>−0.08 [−0.91, 0.76]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Tomic 2017</td>
<td>18</td>
<td>9.4</td>
<td>13</td>
<td>7.5</td>
<td>5.5</td>
<td>13</td>
<td>2.5%</td>
<td>1.32 [0.46, 2.18]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Vangco 2017</td>
<td>15.7</td>
<td>18.36</td>
<td>15</td>
<td>0.43</td>
<td>7.3</td>
<td>15</td>
<td>2.8%</td>
<td>1.06 [0.29, 1.84]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Villafane 2017</td>
<td>9.9</td>
<td>1.9</td>
<td>16</td>
<td>9.1</td>
<td>1.9</td>
<td>16</td>
<td>3.2%</td>
<td>0.41 [−0.29, 1.11]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Volpe 2000</td>
<td>6</td>
<td>3.5</td>
<td>30</td>
<td>4</td>
<td>2.26</td>
<td>26</td>
<td>4.2%</td>
<td>0.68 [0.14, 1.22]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Volpe 2008</td>
<td>19.46</td>
<td>13.27</td>
<td>11</td>
<td>17.7</td>
<td>8.22</td>
<td>10</td>
<td>2.5%</td>
<td>0.15 [−0.71, 1.01]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Wu 2012</td>
<td>3.85</td>
<td>6.71</td>
<td>14</td>
<td>3.71</td>
<td>7.08</td>
<td>28</td>
<td>3.6%</td>
<td>0.02 [−0.62, 0.66]</td>
<td>+ ? + ?</td>
</tr>
<tr>
<td>Yoo 2013</td>
<td>1.7</td>
<td>9.94</td>
<td>11</td>
<td>0.3</td>
<td>3.93</td>
<td>11</td>
<td>2.6%</td>
<td>0.18 [−0.66, 1.02]</td>
<td>+ ? + ?</td>
</tr>
</tbody>
</table>

Total (95% CI) 597 569 100.0% 0.39 [0.23, 0.55]
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Treatment</th>
<th>Control</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
</tr>
<tr>
<td>Burgar 2011</td>
<td>14.85</td>
<td>11.2</td>
<td>36</td>
</tr>
<tr>
<td>Hesse 2005</td>
<td>12.09</td>
<td>8.35</td>
<td>22</td>
</tr>
<tr>
<td>Hesse 2014</td>
<td>7.05</td>
<td>7.1</td>
<td>25</td>
</tr>
<tr>
<td>Houseman 2009</td>
<td>0.8</td>
<td>0.53</td>
<td>12</td>
</tr>
<tr>
<td>Hsieh 2011</td>
<td>3.53</td>
<td>0.53</td>
<td>12</td>
</tr>
<tr>
<td>Hwang 2012</td>
<td>1.7</td>
<td>7.04</td>
<td>9</td>
</tr>
<tr>
<td>Klamroth-Marganska 2014</td>
<td>1.4</td>
<td>0.8</td>
<td>39</td>
</tr>
<tr>
<td>Lum 2006</td>
<td>7.87</td>
<td>7.47</td>
<td>24</td>
</tr>
<tr>
<td>Masiero 2007</td>
<td>1.73</td>
<td>1.23</td>
<td>17</td>
</tr>
<tr>
<td>Masiero 2011</td>
<td>0.77</td>
<td>0.64</td>
<td>11</td>
</tr>
<tr>
<td>Mayr 2008</td>
<td>3.63</td>
<td>4.39</td>
<td>4</td>
</tr>
<tr>
<td>Rabadi 2008</td>
<td>8.33</td>
<td>7.86</td>
<td>10</td>
</tr>
<tr>
<td>Sale 2014</td>
<td>13.89</td>
<td>15.5</td>
<td>26</td>
</tr>
<tr>
<td>Vanoglio 2017</td>
<td>23</td>
<td>18.56</td>
<td>15</td>
</tr>
<tr>
<td>Villafane 2017</td>
<td>24.4</td>
<td>2.6</td>
<td>16</td>
</tr>
<tr>
<td>Volpe 2000</td>
<td>4.1</td>
<td>1.4</td>
<td>30</td>
</tr>
<tr>
<td>Volpe 2008</td>
<td>4.82</td>
<td>0.66</td>
<td>11</td>
</tr>
<tr>
<td>Yoo 2013</td>
<td>1</td>
<td>3.61</td>
<td>11</td>
</tr>
</tbody>
</table>

Total (95% CI):

<table>
<thead>
<tr>
<th>Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
<td></td>
<td>295</td>
<td>100.0%</td>
<td>0.55 [0.16, 0.94]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.55; Chi² = 86.07, df = 17 (P < 0.000001); I² = 80%
Test for overall effect: Z = 2.75 (P = 0.006)

Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of outcome assessment (detection bias)
(D) Selection reporting (reporting bias)

Improvement of hand/ arm strength
Conclusions:

“[...] There is still significant need to improve efficiency and reduce cost of home-based devices for therapy and ADLs assistance. The effectiveness of robotic over conventional therapy is arguable and the best therapy strategy is still not clear. The situation may change soon, because more and more devices are being commercialized and more scientific results will be available. [...]”
„Robot-Assisted Training for the Upper Limb after Stroke“ in GBR

recruitment of 762 patients untill the end of April 2018

Complete support of the National Health Service, (NHS)
 - robotic-assisted therapy, three times a week over 12 weeks
 - additional therapy for the upper extremity without robotics, three times a week over 12 weeks
 - for NHS usual therapy (no additional therapy)
Guidelines for Robotic-assisted Training

- Guidelines AHA
 - Further studies needed to develop optimal test protocols

- Guidelines DGNR
 - Grade of Recommendation B for Armrobot. therapy
Advantage therapy robot

- Safe method in the early phase of rehabilitation (set-up)
- Clinically appropriate outcome-measure
- Many ways to treat
- Support functional restoration
- Apply as 'add-on' exercise equipment
Critical review of robotic evidence

- Evidence
 - Correct therapeutic window (first days)
 - Uneligible study design (quantity, power, etc.)
 - Inhomogeneous patient selection

- Therapie
 - Underchallenging
 - Not variable enough
 - Therapist can not "feel" patient with the help of the robot
 - There are no «optimal» training protocols at present
Summary

We still do not know how to perform a robot-guided workout optimally, but therapy robots have many benefits...
Take Home Message

- The sooner the patient can start rehabilitation, the better
- „Intensity matters“: Intensity and repetition
- Task- and phase-specific training enables the best possible recovery of motor properties
- Targeted, consistent and structured training with help of an individual treatment plan is clinically relevant
Outlook for the future

- Therapeutic approach
- Choice of exercise
- Dose
- Intensive and acute patients
- Integration
- Implementation of study results
Outlook for the future

- interact more with humans themselves via different interfaces
- Exploring the problems adapting of the requirement to specific patients
- Robots which recommend the user to use a different device
- meaningful robot-assisted applications for all patient groups
Thank you very much for your attention!

Stefan Ortmann, MSc, OT
Literature

Literatur

22 Hill D. Mechanical engineering in the medieval near east. Scientific American 1991; 64-69

27 Krebs HI. On a unique fellow and a good friend: Celebrating the life of Stefan Hesse and his contributions to rehabilitation robotics, 1960–2016. NeuroRehabilitation 2017; 1: 1-3

32 Leon D, Cortes M, Elder J. et al. tDCS does not enhance the effects of robot-assisted gait training in patient with subacute stroke. Restor Neurol Neurosci 2017; Jul 6 DOI: 10.3233/RNN-170734

38 Mehrholz J, Kugler J, Platz T. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015; 11 Art. No.: CD006876. DOI: 10.1002/14651858.CD006876.pub4

08.03.2018 Stefan Ortmann
Literatur

- Miguel Cruz A, Rios Rincón AM, Rodríguez Duenas WR. *What does the literature say about using robots on children with disabilities?* Disabil Rehabil Assist Technol 2017; 5: 429-440
- Nam KY, Kim HJ, Kwon BS. et al. *Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review*. Journal of NeuroEngineering and Rehabilitation 2017; 24
- Riener R. *The Cybathlon promotes the development of assistive technology for people with physical disabilities*. Journal of NeuroEngineering and Rehabilitation 2016; 1: 49
- Rong W, Li W, Pang M. et al. *A neuromuscular electrical stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke*. Journal of NeuroEngineering and Rehabilitation 2017; 34

08.03.2018 Stefan Ortmann

60 Simonetti D, Zollo L, Milighetti S. et al. Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front Hum Neurosci 2017; 268

64 Straudi S, Manfredini F, Lambert L. et al. The effectiveness of robot-assisted gait training versus conventional therapy on mobility in severely disabled progressive Multiple Sclerosis patients (RAGTIME): Study protocol for a randomized controlled trial. Trials 2017; 1: 88

67 Thiele E. Karel Capek, Biografie. Leipzig Reclam; 1988

69 Valentin Soler M, Aguera-Ortiz L, Olazaran Rodriguez J. et al. Social robots in advanced dementia. Front Aging Neurosci 2015; 133

74 Xie X, Sun H, Zeng Q. et al. Do patients with multiple sclerosis derive more benefit from robot-assisted gait training compared with conventional walking therapy on motor function? A meta-analysis. Front Neurol 2017; 280

Literatur

Literatur

42 Leon D, Cortes M, Elder JHK. et al. tDCS does not enhance the effects of robot-assisted gait training in patient with subacute stroke. Restor Neurol Neurosci 2017; Jul 6 DOI: 10.3233/RNN-170734

44 Lum PS, Burgar CG, Shor PC. et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation 2010; 91: 952-959

53 Mehrholz J, Potthast I, Platz T. et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015; 11 Art. No.: CD006876. DOI: 10.1002/14651858.CD006876.pub4

55 Mehrholz J, Kugler J, Elsner B. Protocol of a systematic review with network meta-analysis on randomized trials focusing on the effects of robot-assisted training for improving upper limb capacity and function after stroke PROSPERO: International prospective register of systematic reviews 2017. im internet: www.crd.york.ac.uk/PROSPERO/ShowRecord.asp?ID=7411 Stand: 29.08.2017
Literatur

58 Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ 2013; i2914

63 Rien R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing 2005; 1: 2-10

08.03.2018 Stefan Ortmann